Matrice de gains pour Nash Equilibrium

L'équilibre de Nash fait référence au niveau de résultat où un changement de stratégie n'apporterait pas d'avantages supplémentaires à un joueur si les autres joueurs ne changeaient pas leurs stratégies.

L'équilibre de Nash peut se produire plusieurs fois dans une partie. Il a été inventé par John Nash et peut s’appliquer dans de nombreux domaines, tels que l’écologie et l’économie.

Laissez-nous comprendre le concept d'équilibre de Nash à l'aide d'un exemple. Supposons que deux organisations, P et Q, souhaitent augmenter leurs bénéfices en augmentant leurs dépenses publicitaires. Dans un tel cas, chaque organisation peut adopter deux types de stratégies. La première consiste à augmenter les dépenses publicitaires et l’autre à maintenir les dépenses publicitaires constantes ou à ne pas modifier les dépenses publicitaires.

Le tableau 8 présente la matrice des gains de deux organisations:

Dans le tableau 8, aucune des deux organisations n’a de stratégie dominante; par conséquent, leurs stratégies dépendent des stratégies de chacun. Par exemple, si l'organisation P augmente les dépenses publicitaires, elle doit également augmenter ses dépenses publicitaires. Si l'organisation Q n'augmente pas ses dépenses publicitaires, le résultat de P augmente.

Par conséquent, dans le cas présent, on peut conclure que les deux organisations, P et Q, devraient suivre la même stratégie d’augmentation des dépenses publicitaires) afin d’obtenir le maximum d’avantages. En effet, si aucun d’entre eux n’augmente leurs dépenses publicitaires, l’organisation P connaît une augmentation des ventes de Rs. 25 millions, alors que les ventes de l'organisation Q seraient de Rs. 5 millions seulement.

Cependant, si l'organisation Q augmente ses dépenses publicitaires, ses ventes augmentent à RS. 10 millions. Par conséquent, il est bon que l’organisation Q augmente ses dépenses publicitaires. Maintenant, les organisations P doivent également suivre l'organisation Q. Ceci est le cas similaire à une situation de marché oligopolistique. Sur un marché oligopolistique, si une organisation réduit les prix de ses produits, les autres organisations rivales doivent également réduire leurs prix, de manière à pouvoir fidéliser leurs clients.

Dilemme des prisonniers

Le dilemme du prisonnier fait référence au jeu dans lequel même en adoptant les meilleures stratégies, les joueurs ne peuvent obtenir le meilleur résultat. En cas de dilemme, chaque joueur veut minimiser son risque sur le coût d'augmentation du risque pour le (s) autre (s) joueur (s). En réduisant les risques pour eux-mêmes, les joueurs se retrouvent dans une situation critique, qui peut être évitée s'ils coopèrent avec chacun de nous pour comprendre le dilemme du prisonnier à l'aide d'un exemple.

Supposons qu'il y ait deux individus, nommés John, impliqués dans le trafic de drogue. Ils sont arrêtés par la police selon les informations fournies par l'un des informateurs de Now. La police les interroge séparément.

On leur a dit trois résultats de leurs réponses, qui sont les suivants:

je. Si les deux gardent le silence, ils seront libérés car rien ne prouve leur implication dans le trafic de drogue.

ii. S'ils avouent leurs activités perverses, ils seraient emprisonnés pendant cinq ans.

iii. Si l'un d'eux avoue et l'autre reste silencieux, le confesseur serait emprisonné pendant deux ans, tandis que l'autre serait emprisonné pendant dix ans.

Maintenant, le problème avec John et Mac est qu’ils ne savent pas si leur partenaire resterait silencieux ou s’avouerait. C'est donc une situation de confusion.

Le tableau 9 présente la matrice des retombées dans le cas présent:

Comme le montre le tableau 9, les deux individus ont deux options: se confesser ou rester silencieux. La décision d'avouer par les deux individus dépend de la période d'emprisonnement. La meilleure option pour eux deux est de rester silencieux. Cependant, en raison de l'incertitude quant à la décision de chacun, ils ne peuvent pas rester silencieux. C'est donc une situation de dilemme pour John et Mac.

Dans le cas présent, on peut s’attendre à ce que les deux d’eux confessent réduire leur peine d’emprisonnement. Par conséquent, la meilleure option dans cette situation serait d’avouer et d’être emprisonnée pendant cinq ans. En effet, si l'un des partenaires avoue et l'autre nie, celui qui nie serait emprisonné pendant 10 ans.

 

Laissez Vos Commentaires